GaussianConstraint#
- class zfit.constraint.GaussianConstraint(params, observation, uncertainty)[source]#
Bases:
TFProbabilityConstraint
,SerializableMixin
Gaussian constraints on a list of parameters to some observed values with uncertainties.
A Gaussian constraint is defined as the likelihood of
params
given theobservations
anduncertainty
from a different measurement.\[\text{constraint} = \text{Gauss}(\text{observation}; \text{params}, \text{uncertainty})\]- Parameters:
params (ztyping.ParamTypeInput) – The parameters to constraint; corresponds to x in the Gaussian distribution.
observation (ztyping.NumericalScalarType) – observed values of the parameter; corresponds to mu in the Gaussian distribution.
uncertainty (ztyping.NumericalScalarType) – Uncertainties or covariance/error matrix of the observed values. Can either be a single value, a list of values, an array or a tensor. Corresponds to the sigma of the Gaussian distribution.
- Raises:
ShapeIncompatibleError – If params, mu and sigma have incompatible shapes.
- property covariance#
Return the covariance matrix of the observed values of the parameters constrained.
- add_cache_deps(cache_deps, allow_non_cachable=True)#
Add dependencies that render the cache invalid if they change.
- Parameters:
cache_deps (ztyping.CacherOrCachersType) –
allow_non_cachable (bool) – If True, allow cache_dependents to be non-cachables. If False, any cache_dependents that is not a ZfitGraphCachable will raise an error.
- Raises:
TypeError – if one of the cache_dependents is not a ZfitGraphCachable _and_ allow_non_cachable if False.
- property dtype: DType#
The dtype of the object.
- classmethod from_asdf(asdf_obj)#
Load an object from an asdf file.
- classmethod from_dict(dict_)#
Creates an object from a dictionary structure as generated by to_dict.
- Parameters:
dict – Dictionary structure.
- Returns:
The deserialized object.
- classmethod from_json(cls, json)#
Load an object from a json string.
- get_cache_deps(only_floating=True)#
Return a set of all independent
Parameter
that this object depends on.- Parameters:
only_floating (
bool
) – IfTrue
, only return floatingParameter
- Return type:
OrderedSet
- get_dependencies(only_floating: bool = True) ztyping.DependentsType #
DEPRECATED FUNCTION
Deprecated: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use get_params instead if you want to retrieve the independent parameters or get_cache_deps in case you need the numerical cache dependents (advanced).
- Return type:
OrderedSet
- get_params(floating=True, is_yield=None, extract_independent=True, only_floating=<class 'zfit.util.checks.NotSpecified'>)#
Recursively collect parameters that this object depends on according to the filter criteria.
- Which parameters should be included can be steered using the arguments as a filter.
- None: do not filter on this. E.g.
floating=None
will return parameters that are floating as well as parameters that are fixed.
- None: do not filter on this. E.g.
True: only return parameters that fulfil this criterion
- False: only return parameters that do not fulfil this criterion. E.g.
floating=False
will return only parameters that are not floating.
- False: only return parameters that do not fulfil this criterion. E.g.
- Parameters:
floating (
Optional
[bool
]) – if a parameter is floating, e.g. iffloating()
returns Trueis_yield (
Optional
[bool
]) – if a parameter is a yield of the _current_ model. This won’t be applied recursively, but may include yields if they do also represent a parameter parametrizing the shape. So if the yield of the current model depends on other yields (or also non-yields), this will be included. If, however, just submodels depend on a yield (as their yield) and it is not correlated to the output of our model, they won’t be included.extract_independent (
Optional
[bool
]) – If the parameter is an independent parameter, i.e. if it is aZfitIndependentParameter
.
- Return type:
set
[ZfitParameter
]
- classmethod get_repr()#
Abstract representation of the object for serialization.
This objects knows how to serialize and deserialize the object and is used by the to_json, from_json, to_dict and from_dict methods.
- Returns:
The representation of the object.
- Return type:
pydantic.BaseModel
- property observation#
Return the observed values of the parameters constrained.
- register_cacher(cacher)#
Register a cacher that caches values produces by this instance; a dependent.
- Parameters:
cacher (ztyping.CacherOrCachersType) –
- reset_cache_self()#
Clear the cache of self and all dependent cachers.
- sample(n)#
Sample
n
points from the probability density function for the observed value of the parameters.- Parameters:
n – The number of samples to be generated.
Returns:
- to_asdf()#
Convert the object to an asdf file.
- to_dict()#
Convert the object to a nested dictionary structure.
- Returns:
The dictionary structure.
- Return type: