Creating your own pdf#
A core feature of zfit is the ability to create custom pdfs and functions in an simple and straightforward way.
There are two main possibilities to create a custom pdf, an easier for most use-cases and an advanced way..
The simple way#
While the same works for functions, an example with a PDF is shown here.
import numpy as np
import zfit
from zfit import z
/home/docs/checkouts/readthedocs.org/user_builds/zfit/envs/latest/lib/python3.11/site-packages/zfit/__init__.py:63: UserWarning: TensorFlow warnings are by default suppressed by zfit. In order to show them, set the environment variable ZFIT_DISABLE_TF_WARNINGS=0. In order to suppress the TensorFlow warnings AND this warning, set ZFIT_DISABLE_TF_WARNINGS=1.
warnings.warn(
The first way is the most simple and should only be used for the trivial cases, i.e. if you’re not familiar with Python classes (especially not with the __init__
method).
class MyGauss(zfit.pdf.ZPDF):
_N_OBS = 1 # dimension, can be omitted
_PARAMS = ['mean', 'std'] # the name of the parameters
def _unnormalized_pdf(self, x):
x = z.unstack_x(x) # returns a list with the columns: do x, y, z = z.unstack_x(x) for 3D
mean = self.params['mean']
std = self.params['std']
return z.exp(- ((x - mean) / std) ** 2)
Done. Now we can use our pdf already!
The slightly more general way involves overwritting the __init__
and gives you all the possible flexibility: to use custom parameters, to preprocess them etc.
Here we inherit from BasePDF
class MyGauss(zfit.pdf.BasePDF):
def __init__(self, mean, std, obs, extended=None, norm=None, name=None):
params = {'mean': mean, # 'mean' is the name as it will be named in the PDF, mean is just the parameter to create the PDF
'std': std
}
super().__init__(obs=obs, params=params, extended=extended, norm=norm,
name=name)
def _unnormalized_pdf(self, x):
x = z.unstack_x(x)
mean = self.params['mean']
std = self.params['std']
return z.exp(- ((x - mean) / std) ** 2)
obs = zfit.Space('obs1', limits=(-3, 6))
data_np = np.random.random(size=1000)
data = zfit.data.Data.from_numpy(array=data_np, obs=obs)
Create two parameters and an instance of your own pdf
mean = zfit.Parameter("mean", 1.)
std = zfit.Parameter("std", 1.)
my_gauss = MyGauss(obs=obs, mean=mean, std=std)
probs = my_gauss.pdf(data)
print(probs[:20])
tf.Tensor(
[0.49604007 0.46568923 0.5637602 0.54731815 0.20990618 0.54768873
0.23882585 0.25797812 0.30019598 0.40913792 0.32013772 0.30322994
0.34503573 0.3582353 0.34055566 0.5368706 0.37734032 0.48748922
0.27341202 0.33674303], shape=(20,), dtype=float64)
If we want to make sure it’s a numpy array, we can use zfit.run
We could improve our PDF by registering an integral
def gauss_integral_from_any_to_any(limits, params, model):
lower, upper = limits.limit1d
mean = params['mean']
std = params['std']
# write your integral here
return 42. # dummy integral, must be a scalar!
limits = zfit.Space(axes=0, limits=(zfit.Space.ANY_LOWER, zfit.Space.ANY_UPPER))
MyGauss.register_analytic_integral(func=gauss_integral_from_any_to_any, limits=limits)
More advanced custom PDFs are introduced in the guide on custom PDFs.