Source code for zfit.models.unbinnedpdf

#  Copyright (c) 2022 zfit
from __future__ import annotations

import pydantic
import tensorflow as tf

from zfit import z
from zfit.core.binning import unbinned_to_binindex
from zfit.core.interfaces import ZfitSpace
from zfit.core.space import supports
from zfit.models.functor import BaseFunctor
from zfit.util.ztyping import ExtendedInputType, NormInputType
from zfit.z import numpy as znp


[docs] class UnbinnedFromBinnedPDF(BaseFunctor): def __init__( self, pdf, obs=None, *, extended: ExtendedInputType = None, norm: NormInputType = None, ): """Create a unbinned pdf from a binned pdf. Args: pdf: Binned PDF that will be used as a step function. obs: |@doc:pdf.init.obs| Observables of the model. This will be used as the default space of the PDF and, if not given explicitly, as the normalization range. The default space is used for example in the sample method: if no sampling limits are given, the default space is used. The observables are not equal to the domain as it does not restrict or truncate the model outside this range. |@docend:pdf.init.obs| extended: |@doc:pdf.init.extended| The overall yield of the PDF. If this is parameter-like, it will be used as the yield, the expected number of events, and the PDF will be extended. An extended PDF has additional functionality, such as the ``ext_*`` methods and the ``counts`` (for binned PDFs). |@docend:pdf.init.extended| norm: |@doc:pdf.init.norm| Normalization of the PDF. By default, this is the same as the default space of the PDF. |@docend:pdf.init.norm| """ if extended is None: if extended is not False and pdf.is_extended: extended = pdf.get_yield() if obs is None: obs = pdf.space obs = obs.with_binning(None) super().__init__(pdfs=pdf, obs=obs, extended=extended, norm=norm) self._binned_space = self.pdfs[0].space.with_obs(self.space) self._binned_norm = self.pdfs[0].norm.with_obs(self.space) @supports(norm="norm", multiple_limits=True) def _pdf(self, x, norm): binned_space = self.pdfs[0].space binindices = unbinned_to_binindex(x, binned_space, flow=True) pdf = self.pdfs[0] binned_norm = norm if norm is False else self._binned_norm values = pdf.pdf(binned_space, norm=binned_norm) # because we have the flow, so we need to make it here with pads padded_values = znp.pad( values, znp.ones((z._get_ndims(values), 2)), mode="constant" ) # for overflow ordered_values = tf.gather_nd(padded_values, indices=binindices) return ordered_values @supports(norm="norm", multiple_limits=True) def _ext_pdf(self, x, norm): binned_space = self.pdfs[0].space binindices = unbinned_to_binindex(x, binned_space, flow=True) pdf = self.pdfs[0] binned_norm = norm if norm is False else self._binned_norm values = pdf.ext_pdf(binned_space, norm=binned_norm) ndim = z._get_ndims(values) # because we have the flow, so we need to make it here with pads padded_values = znp.pad( values, znp.ones((ndim, 2)), mode="constant" ) # for overflow ordered_values = tf.gather_nd(padded_values, indices=binindices) return ordered_values @supports(norm="norm", multiple_limits=True) def _integrate(self, limits, norm, options=None): binned_norm = norm if norm is False else self._binned_norm return self.pdfs[0].integrate(limits, norm=binned_norm, options=options) @supports(norm=True, multiple_limits=True) def _ext_integrate(self, limits, norm, options): binned_norm = norm if norm is False else self._binned_norm return self.pdfs[0].ext_integrate(limits, norm=binned_norm, options=options) @supports(norm=True, multiple_limits=True) def _sample(self, n, limits: ZfitSpace, *, prng=None): if prng is None: prng = z.random.get_prng() pdf = self.pdfs[0] # TODO: use real limits, currently not supported in binned sample sample = pdf.sample(n=n) edges = sample.space.binning.edges ndim = len(edges) edges = [znp.array(edge) for edge in edges] edges_flat = [znp.reshape(edge, [-1]) for edge in edges] lowers = [edge[:-1] for edge in edges_flat] uppers = [edge[1:] for edge in edges_flat] lowers_meshed = znp.meshgrid(*lowers, indexing="ij") uppers_meshed = znp.meshgrid(*uppers, indexing="ij") lowers_meshed_flat = [ znp.reshape(lower_mesh, [-1]) for lower_mesh in lowers_meshed ] uppers_meshed_flat = [ znp.reshape(upper_mesh, [-1]) for upper_mesh in uppers_meshed ] lower_flat = znp.stack(lowers_meshed_flat, axis=-1) upper_flat = znp.stack(uppers_meshed_flat, axis=-1) counts_flat = znp.reshape(sample.values(), (-1,)) counts_flat = tf.cast( counts_flat, znp.int32 ) # TODO: what if we have fractions? lower_flat_repeated = tf.repeat(lower_flat, counts_flat, axis=0) upper_flat_repeated = tf.repeat(upper_flat, counts_flat, axis=0) sample_unbinned = prng.uniform( (znp.sum(counts_flat), ndim), minval=lower_flat_repeated, maxval=upper_flat_repeated, dtype=self.dtype, ) return sample_unbinned
class TypedSplinePDF(pydantic.BaseModel): order: pydantic.conint(ge=0)