
zfit Documentation
Release 0.3.3

zfit

May 15, 2019

Contents

1 Getting started with zfit 3
1.1 What did just happen? . 6

2 Downloading and Installation 9
2.1 Prerequisites . 9
2.2 Downloads . 9
2.3 Installation . 10
2.4 Testing . 10
2.5 Getting help . 10
2.6 Acknowledgements . 10
2.7 License . 10

3 Contributing 13
3.1 Get Started! . 13
3.2 Pull Request Guidelines . 14

4 Space, Observable and Range 15
4.1 Definitions . 15
4.2 Limits . 16

5 Parameter 19
5.1 Independent Parameter . 19
5.2 Dependent Parameter . 20

6 Building a model 21
6.1 Predefined PDFs and basic properties . 21
6.2 Composite PDF . 22
6.3 Extended PDF . 23
6.4 Custom PDF . 23

7 Data 27
7.1 Import dataset from a ROOT file . 27
7.2 Import dataset from a pandas DataFrame or Numpy ndarray . 28

8 Loss 29
8.1 Adding constraints . 29
8.2 Simultaneous fits . 30

i

9 Minimization 31
9.1 Baseline minimizers . 31

10 zfit API documentation 33

ii

zfit Documentation, Release 0.3.3

The zfit package is a model fitting library based on TensorFlow and optimised for simple and direct manipulation
of probability density functions. The main focus is on the scalability, parallelisation and a user friendly experience
framework (no cython, no C++ needed to extend). The basic idea is to offer a pythonic oriented alternative to the very
successful RooFit library from the ROOT data analysis package. While RooFit has provided a stable platform for most
of the needs of the High Energy Physics (HEP) community in the last few years, it has become increasingly difficult to
integrate all the developments in the scientific Python ecosystem into RooFit due to its monolithic nature. Conversely,
the core of zfit aims at becoming a solid ground for model fitting while providing enough flexibility to incorporate
state-of-art tools and to allow scalability going to larger datasets. This challenging task is tackled by following two
basic design pillars:

• The skeleton and extension of the code is minimalist, simple and finite: the zfit library is exclusively designed
for the purpose of model fitting and sampling—opposite to the self-contained RooFit/ROOT frameworks—with
no attempt to extend its functionalities to features such as statistical methods or plotting. This design philosophy
is well exemplified by examining maximum likelihood fits: while zfit works as a backend for likelihood fits and
can be integrated to packages such as lauztat and matplotlib, RooFit performs the fit, the statistical treatment
and plotting within. This wider scope of RooFit results in a lack of flexibility with respect to new minimisers,
statistic methods and, broadly speaking, any new tool that might come.

• Another paramount aspect of zfit is its design for optimal parallelisation and scalability. Even though the choice
of TensorFlow as backend introduces a strong software dependency, its use provides several interesting features
in the context of model fitting. The key concept is that TensorFlow is built under the dataflow programming
model. Put it simply, TensorFlow creates a computational graph with the operations as the nodes of the graph
and tensors to its edges. Hence, the computation only happens when the graph is executed in a session, which
simplifies the parallelisation by identifying the dependencies between the edges and operations or even the
partition across multiple devices (more details can be found in the TensorFlow guide). The architecture of zfit
is built upon this idea and it aims to provide a high level interface to these features, i.e., most of the operations
of graphs and evaluations are hidden for the user, leaving a natural and friendly model fitting and sampling
experience.

The zfit package is Free software, using an Open Source license. Both the software and this document are works in
progress. Source code can be found in our github page.

Contents 1

https://www.tensorflow.org/
https://root.cern.ch/
https://github.com/marinang/lauztat
https://matplotlib.org/
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Dataflow_programming
https://www.tensorflow.org/guide/
https://github.com/zfit/zfit/

zfit Documentation, Release 0.3.3

2 Contents

CHAPTER 1

Getting started with zfit

The zfit library provides a simple model fitting and sampling framework for a broad list of applications. This section
is designed to give an overview of the main concepts and features in the context of likelihood fits in a crash course
manner. The simplest example is to generate, fit and plot a Gaussian distribution.

The first step is to naturally import zfit and verify if the installation has been done successfully:

>>> import tensorflow as tf
>>> import zfit
>>> print("TensorFlow version:", tf.__version__)
TensorFlow version: 1.12.0

Since we want to generate/fit a Gaussian within a given range, the domain of the PDF is defined by an observable
space. This can be created using the Space class

>>> obs = zfit.Space('x', limits=(-10, 10))

The best interpretation of the observable at this stage is that it defines the name and range of the observable axis.

Using this domain, we can now create a simple Gaussian PDF. The most common PDFs are already pre-defined within
the pdf module, including a simple Gaussian. First, we have to define the parameters of the PDF and their limits
using the Parameter class:

>>> mu = zfit.Parameter("mu", 2.4, -1, 5)
>>> sigma = zfit.Parameter("sigma", 1.3, 0, 5)

With these parameters we can instantiate the Gaussian PDF from the library

>>> gauss = zfit.pdf.Gauss(obs=obs, mu=mu, sigma=sigma)

It is recommended to pass the arguments of the PDF as keyword arguments.

The next stage is to create a dataset to be fitted. There are several ways of producing this within the zfit framework
(see the Data section). In this case, for simplicity we simply produce it using numpy and the Data.from_numpy
method:

3

zfit Documentation, Release 0.3.3

>>> import numpy as np
>>> mu_true = 0
>>> sigma_true = 1
>>> data_np = np.random.normal(mu_true, sigma_true, size=10000)
>>> data = zfit.data.Data.from_numpy(obs=obs, array=data_np)
>>> print(data)
<zfit.core.data.Data object at 0x7f90537f4748>

Now we have all the ingredients in order to perform a maximum likelihood fit. Conceptually this corresponds to three
basic steps:

1. create a loss function, in our case a negative log-likelihood logℒ;

2. instantiate our choice of minimiser; and

3. and minimise the log-likelihood.

>>> # Stage 1: create an unbinned likelihood with the given PDF and dataset
>>> nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

>>> # Stage 2: instantiate a minimiser (in this case a basic minuit
>>> minimizer = zfit.minimize.MinuitMinimizer()

>>> # Stage 3: minimise the given negative likelihood
>>> result = minimizer.minimize(nll)

This corresponds to the most basic example where the negative likelihood is defined within the pre-determined observ-
able range and all the parameters in the PDF are floated in the fit. It is often the case that we want to only vary a given
set of parameters. In this case it is necessary to specify which are the parameters to be floated (so all the remaining
ones are fixed to their initial values).

>>> # Stage 3: minimise the given negative likelihood but floating only specific
→˓parameters (e.g. mu)
>>> result = minimizer.minimize(nll, params=[mu])

It is important to highlight that conceptually zfit separates the minimisation of the loss function with respect to the
error calculation, in order to give the freedom of calculating this error whenever needed and to allow the use of external
error calculation packages. Most minimisers will implement their CPU-intensive error calculating with the error
method. As an example, with the MinuitMinimizer one can calculate the MINOS with:

>>> param_errors = result.error()
>>> for var, errors in param_errors.items():
... print('{}: ^{{+{}}}_{{{}}}'.format(var.name, errors['upper'], errors['lower']))
mu: ^{+0.00998104141841555}_{-0.009981515893414316}
sigma: ^{+0.007099472590970696}_{-0.0070162654764939734}

Once we’ve performed the fit and obtained the corresponding uncertainties, it is now important to examine the fit
results. The object result (FitResult) has all the relevant information we need:

>>> print("Function minimum:", result.fmin)
Function minimum: 14170.396450111948
>>> print("Converged:", result.converged)
Converged: True
>>> print("Full minimizer information:", result.info)
Full minimizer information: {'n_eval': 56, 'original': {'fval': 14170.396450111948,
→˓'edm': 2.8519671693442587e-10,
'nfcn': 56, 'up': 0.5, 'is_valid': True, 'has_valid_parameters': True, 'has_accurate_
→˓covar': True, 'has_posdef_covar': True,

(continues on next page)

4 Chapter 1. Getting started with zfit

zfit Documentation, Release 0.3.3

(continued from previous page)

'has_made_posdef_covar': False, 'hesse_failed': False, 'has_covariance': True, 'is_
→˓above_max_edm': False, 'has_reached_call_limit': False}}

Similarly one can obtain information on the fitted parameters with

>>> # Information on all the parameters in the fit
>>> params = result.params

>>> # Printing information on specific parameters, e.g. mu
>>> print("mu={}".format(params[mu]['value']))
mu=0.012464509810750313

As already mentioned, there is no dedicated plotting feature within zfit. However, we can easily use external libraries,
such as matplotlib, to do the job:

>>> # Some simple matplotlib configurations
>>> import matplotlib.pyplot as plt
>>> lower, upper = obs.limits
>>> data_np = zfit.run(data)
>>> counts, bin_edges = np.histogram(data_np, 80, range=(lower[-1][0], upper[0][0]))
>>> bin_centres = (bin_edges[:-1] + bin_edges[1:])/2.
>>> err = np.sqrt(counts)
>>> plt.errorbar(bin_centres, counts, yerr=err, fmt='o', color='xkcd:black')

>>> x_plot = np.linspace(lower[-1][0], upper[0][0], num=1000)
>>> y_plot = zfit.run(gauss.pdf(x_plot, norm_range=obs))

>>> plt.plot(x_plot, y_plot*data_np.shape[0]/80*obs.area(), color='xkcd:blue')
>>> plt.show()

5

zfit Documentation, Release 0.3.3

The plotting example above presents a distinctive feature that had not been shown in the previous exercises: the
specific call to zfit.run, a specialised wrapper around tf.Session().run. While actions like minimize
or sample return Python objects (including numpy arrays or scalars), functions like pdf or integrate return
TensorFlow graphs, which are lazy-evaluated. To obtain the value of these PDFs, we need to execute the graph by
using zfit.run.

1.1 What did just happen?

The core idea of TensorFlow is to use dataflow graphs, in which sessions run part of the graphs that are required.
Since zfit has TensorFlow at its core, it also preserves this feature, but wrapper functions are used to hide the graph
generation and graph running two-stage procedure in the case of high-level functions such as minimize. However,
it is worth noting that most of the internal objects that are built by zfit are intrinsically graphs that are executed by
running the session:

zfit.run(TensorFlow_object)

One example is the Gauss PDF that has been shown above. The object gauss contains all the functions you would
expect from a PDF, such as calculating a probability, calculating its integral, etc. As an example, let’s calculate the
probability for given values

>>> from zfit import ztf
>>> consts = [-1, 0, 1]
>>> probs = gauss.pdf(ztf.constant(consts), norm_range=(-np.infty, np.infty))

(continues on next page)

6 Chapter 1. Getting started with zfit

zfit Documentation, Release 0.3.3

(continued from previous page)

>>> # And now execute the tensorflow graph
>>> result = zfit.run(probs)
>>> print("x values: {}\nresult: {}".format(consts, result))
x values: [-1, 0, 1]
result: [0.24262615 0.39670691 0.24130008]

Integrating a given PDF for a given normalisation range also returns a graph, so it needs to be run using zfit.run:

>>> with gauss.set_norm_range((-1e6, 1e6)):
... print(zfit.run(gauss.integrate((-0.6, 0.6))))
... print(zfit.run(gauss.integrate((-3, 3))))
... print(zfit.run(gauss.integrate((-100, 100))))
0.4492509559828224
0.9971473939649167
1.0

1.1. What did just happen? 7

zfit Documentation, Release 0.3.3

8 Chapter 1. Getting started with zfit

CHAPTER 2

Downloading and Installation

2.1 Prerequisites

zfit works with Python versions 3.6 and 3.7. The following packages are required:

• tensorflow >= 1.10.0

• tensorflow_probability >= 0.3.0

• scipy>=1.2

• pandas, temporarily

• numpy

• uproot

• iminuit

• typing

• pep487

• colorlog

• texttable

All of these are readily available on PyPI, and should be installed automatically if installing with pip install
zfit.

In order to run the test suite, the pytest package is required

2.2 Downloads

The latest beta version is 0.3.0 and is available from PyPi <https://pypi.org/project/zfit/>.

9

https://www.tensorflow.org/
https://www.tensorflow.org/probability
https://www.scipy.org/
https://pandas.pydata.org
http://www.numpy.org/
https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/iminuit
https://docs.python.org/3/library/typing.html
https://github.com/zaehlwerk/pep487
https://github.com/borntyping/python-colorlog
https://github.com/bufordtaylor/python-texttable
https://docs.pytest.org/en/latest/

zfit Documentation, Release 0.3.3

2.3 Installation

The easiest way to install zfit is with

pip install zfit

To get the latest development version, use:

git clone https://github.com/zfit/zfit.git

and install using:

python setup.py install

2.4 Testing

A battery of tests scripts that can be run with the pytest testing framework is distributed with zfit in the tests folder.
These are automatically run as part of the development process. For any release or any master branch from the git
repository, running pytest should run all of these tests to completion without errors or failures.

2.5 Getting help

If you have questions, comments, or suggestions for zfit, please drop is a line in our Gitter channel. If you find a bug in
the code or documentation, open a Github issue and submit a report. If you have an idea for how to solve the problem
and are familiar with Python and GitHub, submitting a GitHub Pull Request would be greatly appreciated. If you are
unsure whether to use the Gitter channel or the Issue tracker, please start a conversation in the Gitter channel.

2.6 Acknowledgements

zfit has been developed with support from the University of Zürich and the Swiss National Science Foundation (SNSF)
under contracts 168169 and 174182.

The idea of zfit is inspired by the TensorFlowAnalysis framework developed by Anton Poluektov using the TensorFlow
open source library.

2.7 License

The zfit code is distributed under the BSD-3-Clause License:

Copyright (c) 2018, zfit All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

10 Chapter 2. Downloading and Installation

https://docs.pytest.org/en/latest/
https://gitter.im/zfit/zfit
https://github.com/zfit/zfit/issues/new
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis

zfit Documentation, Release 0.3.3

• Neither the name of the <organization> nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.7. License 11

zfit Documentation, Release 0.3.3

12 Chapter 2. Downloading and Installation

CHAPTER 3

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

• You can report bugs at https://github.com/zfit/zfit/issues.

• You can send feedback by filing an issue at https://github.com/zfit/zfit/issues or,

for more informal discussions, you can also join our Gitter channel.

3.1 Get Started!

Ready to contribute? Here’s how to set up zfit for local development.

1. Fork the zfit repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/zfit.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv zfit
$ cd zfit/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass the tests:

$ py.test

13

https://github.com/zfit/zfit/issues
https://github.com/zfit/zfit/issues
https://gitter.im/zfit/zfit

zfit Documentation, Release 0.3.3

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website. The test suite is going to run again, testing all the necessary
Python versions.

3.2 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the necessary explanations in the corresponding rst file in the docs. If any math is
involved, please document the exact formulae implemented in the docstring/docs.

3. The pull request should work for Python 3.6 and 3.7. Check https://travis-ci.org/zfit/zfit/pull_requests and make
sure that the tests pass for all supported Python versions.

14 Chapter 3. Contributing

https://travis-ci.org/zfit/zfit/pull_requests

CHAPTER 4

Space, Observable and Range

Inside zfit, Space defines the domain of objects by specifying the observables/axes and maybe also the limits. Any
model and data needs to be specified in a certain domain, which is usually done using the obs argument. It is crucial
that the axis used by the observable of the data and the model match, and this matching is handle by the Space class.

obs = zfit.Space("x")
model = zfit.pdf.Gauss(obs=obs, ...)
data = zfit.Data.from_numpy(obs=obs, ...)

4.1 Definitions

Space: an n-dimensional definition of a domain (either by using one or more observables or axes), with or without
limits.

Note: compared to ‘RooFit‘, a space is **not* the equivalent of an observable but rather corresponds to an object
combining a set of observables (which of course can be of size 1). Furthermore, there is a strong distinction in zfit
between a Space (or observables) and a Parameter, both conceptually and in terms of implementation and usage.*

Observable: a string defining the axes; a named axes.

(for advanced usage only, can be skipped on first read) Axis: integer defining the axes internally of a model. There is
always a mapping of observables <-> axes once inside a model.

Limit The range on a certain axis. Typically defines an interval.

Since every object has a well defined domain, it is possible to combine them in an unambiguous way

obs1 = zfit.Space(['x', 'y'])
obs2 = zfit.Space(['z', 'y'])

model1 = zfit.pdf.Gauss(obs=obs1, ...)
model2 = zfit.pdf.Gauss(obs=obs2, ...)

(continues on next page)

15

zfit Documentation, Release 0.3.3

(continued from previous page)

creating a composite pdf
product = model1 * model2
OR, equivalently
product = zfit.pdf.ProductPDF([model1, model2])

The product is now defined in the space with observables [‘x’, ‘y’, ‘z’]. Any Data object to be combined with
product has to be specified in the same space.

create the space
combined_obs = obs1 * obs2

data = zfit.Data.from_numpy(obs=combined_obs, ...)

Now we have a Data object that is defined in the same domain as product and can be used to build a loss function.

4.2 Limits

In many places, just defining the observables is not enough and an interval, specified by its limits, is required. Examples
are a normalization range, the limits of an integration or sampling in a certain region.

Simple, 1-dimensional limits can be specified as follows. Operations like addition (creating a space with two intervals)
or combination (increase the dimensionality) are also possible.

simple_limit1 = zfit.Space(obs='obs1', limits=(-5, 1))
simple_limit2 = zfit.Space(obs='obs1', limits=(3, 7.5))

added_limits = simple_limit1 + simple_limit2

In this case, added_limits is now a Space with observable ‘obs1’ defined in the intervals (-5, 1) and (3, 7.5). This can
be useful, e.g., when fitting in two regions. An example of the product of different Space instances has been shown
before as combined_obs.

4.2.1 Defining limits

To define simple, 1-dimensional limits, a tuple with two numbers is enough. For anything more complicated, the
definition works as follows:

first_limit_lower = (low_1_obs1, low_1_obs2,...)
first_limit_upper = (up_1_obs1, up_1_obs2,...)

second_limit_lower = (low_2_obs1, low_2_obs2,...)
second_limit_upper = (up_2_obs1, up_2_obs2,...)

...

lower = (first_limit_lower, second_limit_lower, ...)
upper = (first_limit_upper, second_limit_upper, ...)

limits = (lower, upper)

space1 = zfit.Space(obs=['obs1', 'obs2', ...], limits=limits)

This defines the area from

16 Chapter 4. Space, Observable and Range

zfit Documentation, Release 0.3.3

• low_1_obs1 to up_1_obs1 in the first observable ‘obs1’;

• low_1_obs2 to up_1_obs2 in the second observable ‘obs2’;

• . . .

the area from

• low_2_obs1 to up_2_obs1 in the first observable ‘obs1’;

• low_2_obs2 to up_2_obs2 in the second observable ‘obs2’;

• . . .

and so on.

A working code example of Space handling is provided in spaces.py in examples.

4.2. Limits 17

zfit Documentation, Release 0.3.3

18 Chapter 4. Space, Observable and Range

CHAPTER 5

Parameter

Several objects in zfit, most importantly models, have one or more parameter which typically parametrise a function
or distribution. There are two different kinds of parameters in zfit:

• Independent: can be changed in a fit (or explicitly be set to fixed).

• Dependent: cannot be directly changed but _may_ depend on independent parameters.

5.1 Independent Parameter

To create a parameter that can be changed, e.g., to fit a model, a Parameter has to be instantiated.

The syntax is as follows:

param1 = zfit.Parameter("param_name_human_readable", start_value[, lower_limit, upper_
→˓limit])

Parameter can have limits (tested with has_limits()), which will clip the value to the limits given by
lower_limit() and upper_limit(). While this closely follows the RooFit syntax, it is very important to
note that the optional limits of the parameter behave differently: if not given, the parameter will be “unbounded”, not
fixed. Parameters are therefore floating by default, but their value can be fixed by setting the attribute floating to
False.

The value of the parameter can be changed with the set_value() method. Using this method as a context manager,
the value can also temporarily changed. However, be aware that anything _dependent_ on the parameter will have a
value with the parameter evaluated with the new value at run-time:

>>> mu = zfit.Parameter("mu_one", 1) # no limits
>>> with mu.set_value(3):
... # in here, mu has the value 3
... mu_val = zfit.run(mu) # 3
... five_mu = 5 * mu
... five_mu_val = zfit.run(five_mu) # is evaluated with mu = 5. -> five_mu_val is
→˓15

(continues on next page)

19

zfit Documentation, Release 0.3.3

(continued from previous page)

>>> # here, mu is again 1
>>> mu_val_after = zfit.run(mu) # 1
>>> five_mu_val_after = zfit.run(five_mu) # is evaluated with mu = 1! -> five_mu_val_
→˓after is 5

5.2 Dependent Parameter

A parameter can be composed of several other parameters. We can use any Tensor for that and the dependency will
be detected automatically. They can be used equivalently to Parameter.

>>> mu2 = zfit.Parameter("mu_two", 7)
>>> dependent_tensor = mu * 5 + mu2 # or any kind of computation
>>> dep_param = zfit.ComposedParameter("dependent_param", dependent_tensor)

>>> dependents = dep_param.get_dependents_auto() # returns set(mu, mu2)

A special case of the above is ComplexParameter: it takes a complex tf.Tensor as input and provides a
few special methods (like real(), ComplexParameterconj() etc.) to easier deal with them. Additionally, the
from_cartesian() and from_polar()methods can be used to initialize polar parameters from floats, avoiding
the need of creating complex tf.Tensor objects.

20 Chapter 5. Parameter

CHAPTER 6

Building a model

In order to build a generic model the concept of function and distributed density functions (PDFs) need to be clarified.
The PDF, or density of a continuous random variable, of X is a function f(x) that describes the relative likelihood for
this random variable to take on a given value. In this sense, for any two numbers a and b with 𝑎 ≤ 𝑏,

𝑃 (𝑎 ≤ 𝑋 ≤ 𝑏) =
∫︀ 𝑏

𝑎
𝑓(𝑋)𝑑𝑥

That is, the probability that X takes on a value in the interval [𝑎, 𝑏] is the area above this interval and under the graph
of the density function. In other words, in order to a function to be a PDF it must satisfy two criteria: 1. 𝑓(𝑥) ≥ 0 for
all x; 2.

∫︀∞
−∞ 𝑓(𝑥)𝑑𝑥 = are under the entire graph of 𝑓(𝑥) = 1. In zfit these distinctions are respected, i.e., a function

can be converted into a PDF by imposing the basic two criteria above. . . _basic-model:

6.1 Predefined PDFs and basic properties

A series of predefined PDFs are available to the users and can be easily accessed using autocompletion (if available).
In fact, all of these can also be seen in

>>> print(zfit.pdf.__all__)
['BasePDF', 'Exponential', 'CrystalBall', 'Gauss', 'Uniform', 'WrapDistribution',
→˓'ProductPDF', 'SumPDF', 'ZPDF', 'SimplePDF', 'SimpleFunctorPDF']

These include the basic function but also some operations discussed below. Let’s consider the simple example of a
CrystalBall. PDF objects must also be initialised giving their named parameters. For example:

>>> obs = zfit.Space('x', limits=(4800, 6000))

>>> # Creating the parameters for the crystal ball
>>> mu = zfit.Parameter("mu", 5279, 5100, 5300)
>>> sigma = zfit.Parameter("sigma", 20, 0, 50)
>>> a = zfit.Parameter("a", 1, 0, 10)
>>> n = zfit.Parameter("n", 1, 0, 10)

(continues on next page)

21

zfit Documentation, Release 0.3.3

(continued from previous page)

>>> # Single crystal Ball
>>> model_cb = zfit.pdf.CrystalBall(obs=obs, mu=mu, sigma=sigma, alpha=a, n=n)

In this case the CB object corresponds to a normalised PDF. The main properties of a PDF, e.g. the probability for a
given normalisation range or even to set a temporary normalisation range can be given as

>>> # Get the probabilities of some random generated events
>>> probs = model_cb.pdf(x=np.random.random(10), norm_range=(5100, 5400))
>>> # And now execute the tensorflow graph
>>> result = zfit.run(probs)
>>> print(result)
[3.34187765e-05 3.34196917e-05 3.34202989e-05 3.34181458e-05
3.34172973e-05 3.34209238e-05 3.34164538e-05 3.34210950e-05
3.34201199e-05 3.34209360e-05]

>>> # The norm range of the pdf can be changed any time by
>>> model_cb.set_norm_range((5000, 6000))

Another feature for the PDF is to calculate its integral in a certain limit. This can be easily achieved by

>>> # Calculate the integral between 5000 and 5250 over the PDF normalized
>>> integral_norm = model_cb.integrate(limits=(5000, 5250))

In this case the CB has been normalised using the range defined in the observable. Conversely, the norm_range in
which the PDF is normalised can also be specified as input.

6.2 Composite PDF

A common feature in building composite models it the ability to combine in terms of sum and products different PDFs.
There are two ways to create such models, either with the class API or with simple Python syntax. Let’s consider a
second crystal ball with the same mean position and width, but different tail parameters

>>> # New tail parameters for the second CB
>>> a2 = zfit.Parameter("a2", -1, 0, -10)
>>> n2 = zfit.Parameter("n2", 1, 0, 10)

>>> # New crystal Ball function defined in the same observable range
>>> model_cb2 = zfit.pdf.CrystalBall(obs=obs, mu=mu, sigma=sigma, alpha=a2, n=n2)

We can now combine these two PDFs to create a double Crystal Ball with a single mean and width, either using
arithmetic operations

>>> # First needs to define a parameters that represent
>>> # the relative fraction between the two PDFs
>>> frac = zfit.Parameter("frac", 0.5, 0, 1)

>>> # Two different ways to combine
>>> double_cb = frac * model_cb + model_cb2

Or through the zfit.pdf.SumPDF class:

>>> # or via the class API
>>> double_cb_class = zfit.pdf.SumPDF(pdfs=[model_cb, model_cb2], fracs=frac)

22 Chapter 6. Building a model

zfit Documentation, Release 0.3.3

Notice that the new PDF has the same observables as the original ones, as they coincide. Alternatively one could
consider having PDFs for different axis, which would then create a totalPDF with higher dimension.

A simple extension of these operations is if we want to instead of a sum of PDFs, to model a two-dimensional Gaussian
(e.g.):

>>> # Defining two Gaussians in two different axis (obs)
>>> mu1 = zfit.Parameter("mu1", 1.)
>>> sigma1 = zfit.Parameter("sigma1", 1.)
>>> gauss1 = zfit.pdf.Gauss(obs="obs1", mu=mu1, sigma=sigma1)

>>> mu2 = zfit.Parameter("mu2", 1.)
>>> sigma2 = zfit.Parameter("sigma2", 1.)
>>> gauss2 = zfit.pdf.Gauss(obs="obs2", mu=mu2, sigma=sigma2)

>>> # Producing the product of two PDFs
>>> prod_gauss = gauss1 * gauss2
>>> # Or alternatively
>>> prod_gauss_class = zfit.pdf.ProductPDF(pdfs=[gauss2, gauss1]) # notice the
→˓different order or the pdf

The new PDF is now in two dimensions. The order of the observables follows the order of the PDFs given.

>>> print("python syntax product obs", prod_gauss.obs)
[python syntax product obs ('obs1', 'obs2')]
>>> print("class API product obs", prod_gauss_class.obs)
[class API product obs ('obs2', 'obs1')]

6.3 Extended PDF

In the event there are different species of distributions in a given observable, the simple sum of PDFs does not a priori
provides the absolute number of events for each specie but rather the fraction as seen above. An example is a Gaussian
mass distribution with an exponential background, e.g.

𝑃 = 𝑓𝑆
1√
2𝜋𝜎

𝑒−
(𝑥−𝜇)2

2𝜎2 + (1− 𝑓𝑆)𝑒
−𝛼𝑥

Since we are interested to express a measurement of the number of events, the expression 𝑀(𝑥) = 𝑁𝑆𝑆(𝑥)+𝑁𝐵𝐵(𝑥)
respect that M(x) is normalised to 𝑁𝑆 +𝑁𝐵 = 𝑁 instead of one. This means that 𝑀(𝑥) is not a true PDF but rather
an expression for two quantities, the shape and the number of events in the distributions.

An extended PDF can be easily implemented in zfit in two ways:

>>> # Create a parameter for the number of events
>>> yieldGauss = zfit.Parameter("yieldGauss", 100, 0, 1000)

>>> # Extended PDF using a predefined method
>>> extended_gauss_method = gauss.create_extended(yieldGauss)
>>> # Or simply with a Python syntax of multiplying a PDF with the parameter
>>> extended_gauss_python = yieldGauss * gauss

6.4 Custom PDF

A fundamental design choice of zfit is the ability to create custom PDFs and functions in an easy way. Let’s consider
a simplified implementation

6.3. Extended PDF 23

zfit Documentation, Release 0.3.3

>>> class MyGauss(zfit.pdf.ZPDF):
... """Simple implementation of a Gaussian similar to :py:class`~zfit.pdf.Gauss`
→˓class"""
... _N_OBS = 1 # dimension, can be omitted
... _PARAMS = ['mean', 'std'] # the name of the parameters

>>> def _unnormalized_pdf(self, x):
... x = zfit.ztf.unstack_x(x)
... mean = self.params['mean']
... std = self.params['std']
... return zfit.ztf.exp(- ((x - mean)/std)**2)

This is the basic information required for this custom PDF. With this new PDF one can access the same feature of the
predefined PDFs, e.g.

>>> obs = zfit.Space("obs1", limits=(-4, 4))

>>> mean = zfit.Parameter("mean", 1.)
>>> std = zfit.Parameter("std", 1.)
>>> my_gauss = MyGauss(obs='obs1', mean=mean, std=std)

>>> # For instance integral probabilities
>>> integral = my_gauss.integrate(limits=(-1, 2))
>>> probs = my_gauss.pdf(data, norm_range=(-3, 4))

Finally, we could also improve the description of the PDF by providing a analytical integral for the MyGauss PDF:

>>> def gauss_integral_from_any_to_any(limits, params, model):
... (lower,), (upper,) = limits.limits
... mean = params['mean']
... std = params['std']
... # Write you integral
... return 42. # Dummy value

>>> # Register the integral
>>> limits = zfit.Space.from_axes(axes=0, limits=(zfit.Space.ANY_LOWER, zfit.Space.
→˓ANY_UPPER))
>>> MyGauss.register_analytic_integral(func=gauss_integral_from_any_to_any,
→˓limits=limits)

6.4.1 Sampling from a Model

In order to sample from model, there are two different methods, sample() for advanced sampling returning a
Tensor, and create_sampler() for multiple sampling as used for toys.

6.4.2 Tensor sampling

The sample from sample() is a Tensor that samples when executed. This is for an advanced usecase only

6.4.3 Playing with toys: Multiple samplings

The method create_sampler() returns a sampler that can be used like a Data object (e.g. for building a
ZfitLoss). The sampling itself is not yet done but only when resample() is invoked. The sample generated

24 Chapter 6. Building a model

zfit Documentation, Release 0.3.3

depends on the original pdf at this point, e.g. parameters have the value they have when the resample() is invoked.
To have certain parameters fixed, they have to be specified either on create_sampler() via fixed_params, on
resample() by specifying which parameter will take which value via param_values or by changing the attribute of
Sampler.

How typically toys look like: .. _playing_with_toys:

A typical example of toys would therefore look like

>>> # create a model depending on mu, sigma

>>> sampler = model.create_sampler(n=1000, fixed_params=True)
>>> nll = zfit.loss.UnbinnedNLL(model=model, data=sampler)

>>> minimizer = zfit.minimize.MinuitMinimizer()

>>> for run_number in n_runs:
... # initialize the parameters randomly
... sampler.resample() # now the resampling gets executed
...
... mu.set_value(np.random.normal())
... sigma.set_value(abs(np.random.normal()))
...
... result = minimizer.minimize(nll)
...
... # safe the result, collect the values, calculate errors...

Here we fixed all parameters as they have been initialized and then sample. If we do not provide any arguments to
resample, this will always sample now from the distribution with the parameters set to the

values when the sampler was created.

To give another, though not very useful example:

>>> # create a model depending on mu1, sigma1, mu2, sigma2

>>> sampler = model.create_sampler(n=1000, fixed_params=[mu1, mu2])
>>> nll = zfit.loss.UnbinnedNLL(model=model, data=sampler)

>>> sampler.resample() # now it sampled

>>> # do something with nll
>>> minimizer.minimize(nll) # minimize

>>> sampler.resample()
>>> # note that the nll, being dependent on `sampler`, also changed!

The sample is now resampled with the current values (minimized values) of sigma1, sigma2 and with the initial values
of mu1, mu2 (because they have been fixed).

We can also specify the parameter values explicitly by using the following argument. Reusing the example above

>>> sigma.set_value(np.random.normal())
>>> sampler.resample(param_values={sigma: 5)

The sample (and therefore also the sample the nll depends on) is now sampled with sigma set to 5.

6.4. Custom PDF 25

zfit Documentation, Release 0.3.3

26 Chapter 6. Building a model

CHAPTER 7

Data

An easy and fast data manipulation are among the crucial aspects in High Energy Particle physics data analysis. With
the increasing data availability (e.g. with the advent of LHC), this challenge has been pursued in different manners.
Common strategies vary from multidimensional arrays with attached row/column labels (e.g. DataFrame in pandas)
or compressed binary formats (e.g. ROOT). While each of these data structure designs has their own advantages in
terms of speed and acessibility, the data concept inplemented in zfit follows closely the features of DataFrame in
pandas.

The Data class provides a simple and structured access/manipulation of data – similarly to concept of multidimen-
sional arrays approach from pandas. The key feature of Data is its relation to the Space or more explicitly its axis
or name. A more equally convention is to name the role of the Space in this context as the observable under inves-
tigation. Note that no explicit range for the Space is required at the moment of the data definition, since this is only
required at the moment some calculation is needed (e.g. integrals, fits, etc).

7.1 Import dataset from a ROOT file

With the proliferation of the ROOT framework in the context of particle physics, it is often the case that the user will
have access to a ROOT file in their analysis. A simple method has been used to handle this conversion:

>>> data = zfit.data.Data.from_root(root_file,
... root_tree,
... branches)

where root_file is the path to the ROOT file, root_tree is the tree name and branches are the list (or a single)
of branches that the user wants to import from the ROOT file.

From the default conversion of the dataset there are two optional funcionalities for the user, i.e. the use of weights and
the rename of the specified branches. The nominal structure follows:

>>> data = zfit.data.Data.from_root(root_file,
... root_tree,
... branches,

(continues on next page)

27

zfit Documentation, Release 0.3.3

(continued from previous page)

... branches_alias=None,

... weights=None)

The branches_alias can be seen as a list of strings that renames the original branches. The weights has two
different implementations: (1) either a 1-D column is provided with shape equals to the data (nevents) or (2) a column
of the ROOT file by using a string corresponding to a column. Note that in case of multiple weights are required, the
weight manipulation has to be performed by the user beforehand, e.g. using Numpy/pandas or similar.

Note: The implementation of the from_root method makes uses of the uproot packages, which uses Numpy to
cast bocks of data from the ROOT file as Numpy arrays in time optimised manner. This also means that the goodies
from uproot can also be used by specifying the root_dir_options, such as cuts in the dataset. However, this can be
applied later when examining the produced dataset and it is the advised implementation of this.

7.2 Import dataset from a pandas DataFrame or Numpy ndarray

A very simple manipulation of the dataset is provided via the pandas DataFrame. Naturally this is simplified since the
Space (observable) is not mandatory, and can be obtained directly from the columns:

>>> data = zfit.data.Data.from_pandas(pandas_DataFrame,
... obs = None,
... weights = None)

In the case of Numpy, the only difference is that as input is required a numpy ndarray and the Space (obs) is manda-
tory:

>>> data = zfit.data.Data.from_numpy(numpy_ndarray,
... obs,
... weights = None)

28 Chapter 7. Data

CHAPTER 8

Loss

A loss function can be defined as a measurement of the discrepancy between the observed data and the predicted data
by the fitted function. To some extent it can be visualised as a metric of the goodness of a given prediction as you
change the settings of your algorithm. For example, in a general linear model the loss function is essentially the sum
of squared deviations from the fitted line or plane. A more useful application in the context of High Energy Physics
(HEP) is the Maximum Likelihood Estimator (MLE). The MLE is a specific type of probability model estimation,
where the loss function is the negative log-likelihood (NLL).

In zfit, loss functions inherit from the BaseLoss class and they follow a common interface, in which the model, the
dataset and the fit range (which internally sets norm_range in the PDF and makes sure data only within that range
are used) must be given, and where parameter constraints in form of a dictionary {param: constraint} may be given.
As an example, we can create an unbinned negative log-likelihood loss (UnbinnedNLL) from the model described
in the Basic model section and the data from the Data section:

>>> my_loss = zfit.loss.UnbinnedNLL(model_cb,
>>> data,
>>> fit_range=(-10, 10))

8.1 Adding constraints

Constraints (or, in general, penalty terms) can be added to the loss function either by using the constraints key-
word when creating the loss object or by using the add_constraints() method. These constraints are specified
as a list of penalty terms, which can be any tf.Tensor object that is simply added to the calculation of the loss.

Useful implementations of penalties can be found in the zfit.constraint module. For example, if we wanted to
add adding a gaussian constraint on the mu parameter of the previous model, we would write:

>>> my_loss = zfit.loss.UnbinnedNLL(model_cb,
>>> data,
>>> fit_range=(-10, 10),
>>> constraints=zfit.constraint.nll_
→˓gaussian(params=mu,

(continues on next page)

29

zfit Documentation, Release 0.3.3

(continued from previous page)

>>> mu=5279.,
>>> sigma=10.
→˓))

8.2 Simultaneous fits

There are currently two loss functions implementations in the zfit library, the UnbinnedNLL and
ExtendedUnbinnedNLL classes, which cover non-extended and extended negative log-likelihoods.

A very common use case likelihood fits in HEP is the possibility to examine simultaneously different datasets (that
can be independent or somehow correlated). To build loss functions for simultaneous fits, the addition operator can be
used (the particular combination that is performed depends on the type of loss function):

>>> models = [model1, model2]
>>> datasets = [data1, data2]
>>> my_loss1 = zfit.loss.UnbinnedNLL(models[0], datasets[0], fit_range=(-10, 10))
>>> my_loss2 = zfit.loss.UnbinnedNLL(models[1], datasets[1], fit_range=(-10, 10))
>>> my_loss_sim_operator = my_loss1 + my_loss2

The same result can be achieved by passing a list of PDFs on instantiation, along with the same number of datasets
and fit ranges:

>>> # Adding a list of models, data and observable ranges
>>> my_loss_sim = zfit.loss.UnbinnedNLL(model=[models], data=[datasets], fit_
→˓range=[obsRange])

30 Chapter 8. Loss

CHAPTER 9

Minimization

Minimizer objects are the last key element in the API framework of zfit. In particular, these are connected to the loss
function and have an internal state that can be queried at any moment.

The zfit library is designed such that it is trivial to introduce new sets of minimizers. The only requirement in its
initialisation is that a loss function must be given. Additionally, the parameters to be minimize, the tolerance, its
name, as well as any other argument needed to configure the particular algorithm may be given.

9.1 Baseline minimizers

There are three minimizers currently included in the package: Minuit, Scipy and Adam TensorFlow optimiser.
Let’s show how these can be initialised:

>>> # Minuit minimizer
>>> minimizer_minuit = zfit.minimize.MinuitMinimizer()
>>> # Scipy minimizer
>>> minimizer_scipy = zfit.minimize.ScipyMinimizer()
>>> # Adam's Tensorflow minimizer
>>> minimizer_adam = zfit.minimize.AdamMinimizer()

A wrapper for TensorFlow optimisers is also available to allow to easily integrate new ideas in the framework. For
instance, the Adam minimizer could have been initialised by

>>> # Adam's TensorFlor optimiser using a wrapper
>>> minimizer_wrapper = zfit.minimize.WrapOptimizer(tf.train.AdamOptimizer())

Any of these minimizers can then be used to minimize the loss function we created in previous section, e.g.

>>> result = minimizer_minuit.minimize(loss=my_loss)

The choice of which parameters of your model should be floating in the fit can also be made at this stage

31

zfit Documentation, Release 0.3.3

>>> # In the case of a Gaussian (e.g.)
>>> result = minimizer_minuit.minimize(loss=my_loss, params=[mu, sigma])

Only the parameters given in params are floated in the optimisation process. If this argument is not provided or
params=None, all the floating parameters in the loss function are floated in the minimization process.

The result of the fit is return as a FitResult object, which provides access the minimiser state. zfit separates the
minimisation of the loss function with respect to the error calculation in order to give the freedom of calculating this
error whenever needed. The error() method can be used to perform the CPU-intensive error calculation.

>>> param_errors = result.error()
>>> for var, errors in param_errors.items():
... print('{}: ^{{+{}}}_{{-{}}}'.format(var.name, errors['upper'], errors['lower']))
mu: ^{+0.00998104141841555}_{--0.009981515893414316}
sigma: ^{+0.007099472590970696}_{--0.0070162654764939734}

The result object also provides access the minimiser state:

>>> print("Function minimum:", result.fmin)
Function minimum: 14170.396450111948
>>> print("Converged:", result.converged)
Converged: True
>>> print("Full minimizer information:", result.info)
Full minimizer information: {'n_eval': 56, 'original': {'fval': 14170.396450111948,
→˓'edm': 2.8519671693442587e-10,
'nfcn': 56, 'up': 0.5, 'is_valid': True, 'has_valid_parameters': True, 'has_accurate_
→˓covar': True, 'has_posdef_covar': True,
'has_made_posdef_covar': False, 'hesse_failed': False, 'has_covariance': True, 'is_
→˓above_max_edm': False, 'has_reached_call_limit': False}}

and the fitted parameters

>>> # Information on all the parameters in the fit
>>> params = result.params

>>> # Printing information on specific parameters, e.g. mu
>>> print("mu={}".format(params[mu]['value']))
mu=0.012464509810750313

32 Chapter 9. Minimization

CHAPTER 10

zfit API documentation

The API documentation of zfit can be found below. Most classes and functions are documented with docstrings, but
don’t hesitate to contact us if this documentation is insufficient!

33

	Getting started with zfit
	What did just happen?

	Downloading and Installation
	Prerequisites
	Downloads
	Installation
	Testing
	Getting help
	Acknowledgements
	License

	Contributing
	Get Started!
	Pull Request Guidelines

	Space, Observable and Range
	Definitions
	Limits

	Parameter
	Independent Parameter
	Dependent Parameter

	Building a model
	Predefined PDFs and basic properties
	Composite PDF
	Extended PDF
	Custom PDF

	Data
	Import dataset from a ROOT file
	Import dataset from a pandas DataFrame or Numpy ndarray

	Loss
	Adding constraints
	Simultaneous fits

	Minimization
	Baseline minimizers

	zfit API documentation

